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Abstract. Advances in technology are changing the way that ecological monitoring is carried out, especially for those species
with ecological characteristics that have traditionally made monitoring difficult. Autonomous acoustic recorders coupled with
automated signal detection software is one such approach where technological advances are delivering rapid improvements in
the passive monitoring of vocal fauna. Here we characterise the three common call types of the endangered Mallee Emu-wren
Stipiturus mallee and present a signal detection template, or call recogniser, for the species. We evaluate the performance
of this tool against an independent dataset of field recordings containing Mallee Emu-wren vocalisations. The recogniser
performed well with mean precision and recall metrics ranging between 0.55-0.97 and 0.70-0.95, respectively, depending on
user parameters. This tool is widely applicable in the ongoing conservation of the Mallee Emu-wren, particularly as a low-cost
method for post-release monitoring following a future Mallee Emu-wren translocation.

Introduction

The Mallee Emu-wren Stipiturus mallee is a small,
endangered passerine (Environment Protection and
Biodiversity Conservation Act 1999; IUCN Red List of
Threatened Species; Verdon et al. 2021a), specialised
to live in habitat dominated by hummock grass Triodia
scariosa (Brown et al. 2009; Verdon et al. 2020). Because
Mallee Emu-wrens are shy, secretive and often occur at
low density at the landscape scale, detection in the field
may be challenging and is best achieved by listening
for vocalisations (Higgins et al. 2001). Clearance of
native vegetation, primarily in the early 20th century, has
restricted the species to a fragmented network of large
reserves, between 48,000 and 633,000 ha in size, located
in the Murray Mallee region of north-western Victoria
(Brown et al. 2009). Fire and drought are a natural part
of the Australian landscape. However, change in land
use since European settlement and a changing climate
have led to longer droughts, and larger and more intense
wildfires (Connell et al. 2017). By 2018, whole-reserve-
scale wildfires had led to the local extinction of Mallee
Emu-wrens from six of nine reserves previously occupied
by the species, including all South Australian populations
(Boulton & Lau 2015). In an attempt to mitigate these
threats, a Mallee Emu-wren translocation from Murray—
Sunset National Park, Hattah—Kulkyne National Park and
Nowingi State Forest in Victoria to Ngarkat Conservation
Park in South Australia was implemented in 2018 (Mitchell
et al. 2021). This translocation provided an opportunity
to assess autonomous acoustic recording units and
automated acoustic detection software as a passive, long-
term monitoring tool following translocation.

To demonstrate the long-term persistence of translocated
populations, conservation managers require a detailed
understanding of the dynamics of those populations.
A failure to detect individuals when they are present (i.e. a
false negative) can lead to considerable bias in population
estimates (Tyre et al. 2003; Buckland et al. 2012). This

problem is exacerbated when target species are cryptic
and occur at low densities, as might be expected for the
Mallee Emu-wren at a release site following translocation.
Dynamic occupancy modelling is a method to estimate
population size that explicitly accounts for bias associated
with false negative survey error (MacKenzie et al. 2018).
This method allows probability of detection, probability
of occurrence, and other vital rates to be estimated by
recording the presence or absence of a target species
during repeated visits to survey sites (MacKenzie et al.
2018). Increasing the number of visits to each sampling
site, whilst resulting in a demonstrated increase in accuracy
of estimates of population parameters (MacKenzie et al.
2018), increases both the time and the resources that are
necessary to carry out such surveys, which are already
expensive and labour-intensive. Automating aspects of the
data-collection process may increase efficiency, without
sacrificing precision.

One method showing promise for vocal fauna, including
songbirds, is autonomous acoustic recording units (ARU:
Knight et al. 2017; Shonfield & Bayne 2017). Recordings
that either contain or do not contain vocalisations of target
species can be used to populate dynamic occupancy
models (Campos-Cerqueira et al. 2016; Metcalf et al.
2019). An added advantage of this technique is that it is
passive and minimises bias associated with observer
avoidance or observer skill (Shonfield & Bayne 2017).
Although initial investment in equipment may be greater
than that of a typical observer-based survey, the cost of
continued surveys becomes cheaper per unit effort, the
longer that monitoring continues. Data-driven conservation
management of threatened populations relies on
monitoring that encompasses the natural variation that
populations exhibit over time. However, such monitoring is
not always implemented. A review by Taylor et al. (2017)
concluded that translocation studies rarely incorporate
long-term persistence into success criteria. Several
factors have likely contributed to this trend (e.g. the cost
of monitoring, funding cycles, periods of employment in
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research positions, or difficulty in obtaining funding for
monitoring in comparison with more active conservation
initiatives). However, reducing the commitment to extended
field times and the realisation of cost savings that can be
achieved with automated data collection will enhance
management capacity to maintain long-term monitoring
post-translocation.

The use of ARUs has been demonstrated to reduce field
labour by up to 97% (Digby et al. 2013). However, field
recordings require a substantial investment in time for data
processing to identify calls of targeted species (Shonfield
& Bayne 2017). This process may be streamlined with the
use of automated signal recognition software, hereafter
referred to as ‘recognisers’ (e.g. de Oliveira et al. 2015;
Katz et al. 2016; Priyadarshani et al. 2018; Marsland et
al. 2019; Prince et al. 2019). Several methods exist but
typically a user will ‘train’ the software to recognise the
spectrogram signature of targeted species’ vocalisations.
The software then analyses field recordings using a
moving window approach and any potential matches are
given a similarity score (for the software used in this study,
that score will fall between 0 and 1: Knight et al. 2017). Any
similarity score that exceeds a threshold that has already
been determined by the user is highlighted as a detection
by the software. A detailed summary and comprehensive
evaluation of popular recogniser software is presented in a
review by Knight et al. (2017).

Here we characterise three common vocalisations of
the Mallee Emu-wren and report on development and
performance of an automated call recogniser for the
species using spectrogram cross correlation with the
R package monitoR (Katz et al. 2016).

Study area and method

Recogniser development

Mallee Emu-wren vocalisations are poorly described,
though are generally considered to include three primary
vocalisations: a short buzzing alarm call, a contact call
comprising one to three high-pitched staccato notes,
and a complex song (Higgins et al. 2001; Menkhorst et
al. 2017). The first step in developing a Mallee Emu-
wren call recogniser was to clearly define each of these
vocalisations and assess their suitability as templates
for a recogniser (Table 1). We produced spectrograms
of each call using the R package seewave (Sueur et al.
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2008) and visually assessed calls for two characteristics—
intra-species consistency and inter-species uniqueness
(Figures 1-2)—that would be favourable in automated
call recognition. Of the three common vocalisations, we
then identified the contact call as the best candidate for
automated recognition. We chose 14 individual Mallee
Emu-wren contact calls, each comprising two or three
syllables as the basis for our recogniser (Table 1). We
began with six three-syllable contact calls and then
added an additional three two-syllable contact calls. We
conducted unstructured tests of this preliminary recogniser
and ultimately added an additional five vocalisations that
the preliminary recogniser failed to detect. These calls
were representative of the subtle variation that is typically
found in Mallee Emu-wren calls, including intensity, pitch,
ambient noise and recording quality.

To develop a recogniser for detection of Mallee Emu-
wren calls in field recordings we used the package monitoR
in the statistical environment R (Hafner & Katz 2018;
R Core Team 2020). MonitoR includes two methods for
signal detection: spectrogram cross-correlation and binary
point matching (Katz et al. 2016). We used spectrogram
cross-correlation using automatic point selection following
Katz et al. (2016). We provide the resultant recogniser and
additional code allowing batch-processing of field survey
files as an annotated R script with associated .wav files as
supplementary material (10.6084/m9.figshare.16915957).
Our recogniser comprises 14 individual call templates,
each consisting of a complete, two- or three-syllable
Mallee Emu-wren contact call. MonitoR searches field
recordings for matches with each call template individually
and then provides a list of every detection associated with
each template. We used a sample rate of 44,100 Hz as
more than half of the files used to create this recogniser
were provided at this frequency. Those recorded at
different (higher) frequencies were resampled to 44,100
Hz using the function ‘changeSampRate’ in the monitoR
package. To ensure that audio information is not lost, it is
recommended that recording frequency be set to twice the
maximum frequency of the targeted signal (i.e. the Nyquist
frequency: Knight et al. 2017). Mallee Emu-wren calls
typically fall in the range between 5000 and 12,000 Hz.
To maximise recording time of ARUs per unit of memory
without sacrificing quality, a sample rate of ~24,000 Hz
may be used for future field recordings of Mallee Emu-
wren calls.

Table 1. Recordings used as templates for the development of a Mallee Emu-wren call recogniser. *Translocated birds were
originally sourced from Hattah-Kulkyne and Murray-Sunset National Parks. CP = Conservation Park, NP = National Park.

Contact call templates Location Date Author Notes
1-7 *Ngarkat CP 03/05/2018 William Mitchell ~ Free-roaming translocated Mallee Emu-
wrens in Ngarkat CP
8-11,13, 14 *Ngarkat CP 20/04/2018 Luke Ireland Mallee Emu-wrens calling from within
transport boxes before release
12 Hattah—Kulkyne NP 17/01/2016 Andrew Spencer Call sourced from Xeno-Canto (2020)

https://www.xeno-canto.org/312210
(accessed 1 October 2020)




162 Australian Field Ornithology

W.F. Mitchell & R.H. Clarke

1
4 a) ?uT;‘]thdE b) ?J;a?"lu“
~ 127 0 ~ 127 0
N N
I 5 I " () 5
S - 10 S 101 b -10
> . >
0 0
< 15 € 15
7] Q 4
3 3 . r : 8
O ) - O 220
g 4 Ry = 8
L g 25 W o] -25
T T T -30 T T T -30
0 02 0.4 06 08 0 0.2 0.4 06 0.8
Time (seconds) Time (seconds)
14
c) :;:gnruue
0
~ 12
N
I 5
<
10 -
a =10
< A \ 15
g o | i |
SR LN ARl ANy Ry ESTIRE] B
o WA gRY VR N R{Y ¢ IR
L ' on Lo 25
6 = | | |
contact call
T T T T T -30
0 1 2 3 4 5 6

Time (seconds)

Figure 1. Primary vocalisations of the Mallee Emu-wren: (a) typical contact call, (b) alarm call and (c) song incorporating
the typical contact call. All vocalisations were recorded by WFM in Nowingi State Forest, Victoria, in November 2020, using
an AudioMoth autonomous acoustic recorder (Hill et a/. 2019).
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Figure 2. A series of spectrogram images displaying the alarm calls of the Mallee Emu-wren Stipiturus mallee, Splendid
Fairy-wren Malurus splendens, Superb Fairy-wren M. cyaneus and Purple-backed Fairy-wren M. assimils. Mallee Emu-wren
calls were recorded by WFM in Nowingi State Forest, Victoria, in November 2020. All fairy-wren calls were obtained from
Xeno-Canto (2020) (accessed 17 August 2021)—Splendid Fairy-wren: https:/www.xeno-canto.org/372259, Superb Fairy-
wren: https:/www.xeno-canto.org/370623 and Purple-backed Fairy-wren: https://www.xeno-canto.org/165132.
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Recogniser performance

The effectiveness of acoustic recognisers must be manually
evaluated against a test dataset that is independent of any
recordings used to build the recogniser (Knight et al. 2017).
As a performance benchmark, we used 25 15-second
audio recordings, each including 1-13 (mean = 6.7)
known Mallee Emu-wren vocalisations. This test dataset
contained 169 individual Mallee Emu-wren vocalisations
that ranged in intensity from soft to loud. Vocalisations were
manually verified by visual inspection of spectrograms and
human listening. Recordings also included environmental
noise and the calls of non-target species. Test audio was
recorded in Nowingi State Forest, and Hattah—Kulkyne
and Murray—Sunset National Parks in 2020 and 2021 by
WFM. Mallee Emu-wren recordings were verified by direct
observation of the calling bird at the time of recording.

We used the recogniser described above to search for
Mallee Emu-wren recordings within the test audio files. To
investigate the effect of similarity threshold on recogniser
performance we repeated this process with threshold
values of 0.15, 0.20, 0.25 and 0.30. Similarity threshold is
a user-determined value that controls the sensitivity of the
recogniser (Knight et al. 2017). Potential signal matches
within an audio spectrogram are given a similarity score
between 0 and 1. Any scores below the threshold value
are dismissed, but signals with a similarity score above
the threshold are retained as detections. For each test
file at each threshold, we calculated three performance
metrics advocated by Knight et al. (2017): (1) recall, the
proportion of existing Mallee Emu-wren vocalisations in
each field recording of the test dataset (verified manually)
that were detected by the recogniser; (2) precision, the
proportion of all detections that were true positives; and
(3) F-score, a metric that combines precision and recall to
aid users in identifying optimum threshold values based
on the user’s priorities (Knight et al. 2017). We calculated
mean precision and mean recall across all field recordings
in the test dataset at each threshold value and present the
results as a box-and-whisker plot (Figure 3).

Recall is calculated as true positives

true positives + false negatives

precision as true positives

true positives + false positives

and F-score as (B2+ 1) * precision * recall

[3?* precision + recall

where B is a metric, defined by the user, that allows
prioritisation of either precision or recall (Knight et al. 2017).
Values of B>1 prioritise recall, <1 prioritise precision and
when =1 neither precision nor recall is favoured (Knight
et al. 2017). We calculated F-scores with 8 set to 0.5
(precision twice as important as recall), 1 (precision and
recall equally important) and 2 (precision half as important
as recall) to compare optimum threshold choice under a
range of priorities.

Results
The Mallee Emu-wren contact call is a good candidate for

automated signal recognition for several reasons: few other
species that share the same habitat have calls that overlap
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Table 2. F-scores for different threshold values and 8
values. F-score is a performance metric for automated
signal detection that allows the user to prioritise precision
and/or recall. B is a metric, defined by the user, that allows
prioritisation of either precision or recall. Values of 8 >1
prioritise recall, 8 <1 prioritise precision, and when 8 =1
neither precision nor recall is favoured (Knight et al. 2017).

Threshold F-score, F-score, F-score,
B=05 B=1 B=2
0.15 0.601 0.696 0.829
0.2 0.756 0.790 0.827
0.25 0.876 0.831 0.790
0.3 0.897 0.811 0.739

in frequency because of its high pitch (~6.5-7.5 KHz); it
is simple and consistent; and because it is frequently
incorporated into Mallee Emu-wren song, it makes up a high
proportion of all Mallee Emu-wren vocalisations (Figure 1).
Despite this call being described as thin, high-pitched and
insect-like (Higgins et al. 2001), its spectrogram structure
is distinct from that of insects (longer pulses and distinct
frequency, Montealegre-Z & Mason 2005). By contrast, the
alarm call is a poor candidate for recogniser development
as it has many similarities with the alarm calls of other
Maluridae species that overlap in range and habitat use
with that of the Mallee Emu-wren (in particular Splendid
Fairy-wren Malurus splendens and Striated Grasswren
Amytornis striatus; fairy-wren and emu-wren calls are
presented in Figures 1-2). Such similarities would increase
the likelihood of false positive detections.

The recogniser that we developed successfully identified
Mallee Emu-wren vocalisations in the test dataset of
field recordings (Table 2, Figure 3). Similarity threshold
influenced both precision and recall performance, with
lower threshold values associated with higher recall and
lower precision, whereas higher threshold values led to
lower recall and higher precision (Figure 3). When recall
was prioritised, the optimum recogniser similarity threshold
was 0.15; when precision was prioritised, it was 0.3; and
when recall and precision were considered of equal priority,
it was 0.25 (Table 2).

Discussion

We characterised the three common call types of the
Mallee Emu-wren and successfully developed an acoustic
recogniser utilising the contact call of the species. Our
recogniser performed well on the test dataset in terms of
both precision (0.55-0.97) and recall (0.70-0.95), indicating
that passive acoustic recording represents a feasible
monitoring tool for this species. Acoustic monitoring has
the potential to reduce expense in any future translocation
of this species by considerably reducing field labour
requirements, and it may facilitate long-term passive
monitoring of key populations within the current distribution
(Mitchell et al. 2021).

Context is important when evaluating recogniser
performance (Knight et al. 2017; Leseberg et al. 2020).
Performance metrics should be considered reliable only
under the environmental conditions in which they were
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Figure 3. Performance metrics for an automated Mallee Emu-wren call recogniser, which was tested against a dataset
of 25 independent 15-second field recordings containing vocalisations of Mallee Emu-wrens. Each detection made by
the recogniser was manually verified to assess whether it was a true or false positive detection. Precision refers to the
proportion of detections that were true positives. Recall refers to the proportion of vocalisations present in the recording
(verified manually from spectrogram images) that were detected by the recogniser.

tested (Knight et al. 2017). Many bird species may exhibit
regional variation in vocalisations (e.g. Valderrama et al.
2013; Goretskaia et al. 2018), potentially leading to reduced
performance. Similarly, the potential for false positive
detections may vary as a response to the soundscape
in which ARUs are deployed (Knight et al. 2017). The
contextual information associated with field recordings
may also provide an opportunity forimproved performance.
A recent study by Leseberg et al. (2020) could increase
recogniser precision and recall by modelling the influence
of contextual and intrinsic variables on the likelihood that
each detection was either a true or false positive. Although
performance metrics described in the present study are
informative, potential users should consider them as
a guide only and make context-specific evaluations of
recogniser performance in line with their research goals.

Research goals must be carefully considered when
choosing recogniser parameters (Shonfield & Bayne 2017).
Ahigh call similarity threshold will lead to high precision and
low recall, whereas a low threshold will have the opposite
effect. Precision is paramount when there is limited time
available for manual verification of detections (Knight et al.
2017). False negatives as a result of emphasis on precision
may be accounted for using statistical approaches such
as dynamic occupancy modelling (Metcalf et al. 2019).
When trying to detect sparsely distributed species of
conservation concern, where a single detection has high
value, low threshold values should be considered.

Many of the locations highlighted as potential release
sites for future Mallee Emu-wren translocations have
environmental characteristics that favour passive acoustic
monitoring. Mallee Emu-wrens have a strong association
with hummock grass (Verdon et al. 2020). Most extant
Mallee Emu-wren populations in north-western Victoria
inhabit ‘Triodia mallee’ vegetation characterised by

relatively large areas of mallee eucalypt trees with partial
ground-cover of hummock grass. Home range size in
this vegetation type has been estimated at ~5 ha (Brown
2011). To adequately cover such an area, multiple ARUs
would be required. By comparison, potential translocation
release sites, including parts of Ngarkat Conservation
Park in South Australia, are composed of ‘mallee heath’
vegetation: mostly treeless shrubland with dense pockets
of hummock grass forming at drainage points, such as
at the base of dunes (Mitchell et al. 2021). Mallee Emu-
wrens move throughout this matrix of vegetation, but home
ranges are typically anchored to those pockets of dense
hummock grass. In this system, ARUs would have the
greatest likelihood of capturing vocalisations of this species
if placed within these pockets of hummock grass. For this
reason, a single ARU may effectively cover a single home
range. With this ARU placement, researchers may expect
a territorial group of Mallee Emu-wrens to spend a high
proportion of time in the audible vicinity of an ARU. Thus,
recogniser parameters that prioritise precision over recall
would allow efficient monitoring of changing occupancy at
release sites following translocation.

Autonomous acoustic recorders provide a low-cost and
efficient tool for the long-term monitoring of any translocated
Mallee Emu-wren population. Acoustic monitoring may also
be applied to conservation management of translocation
source populations. The 2018 translocation program
was not successful in establishing a viable population
in Ngarkat Conservation Park (see Mitchell et al. 2021).
Nevertheless, this program framed primarily around
trialling and optimising translocation methods generated
considerable new knowledge that will inform a future larger-
scale translocation (Hunt et al. 2019; Mitchell et al. 2021).
Mallee Emu-wren populations experience fluctuations in
size in response to prevailing climatic conditions (Connell
2019). In the context of harvesting of Mallee Emu-wrens
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for the purpose of future translocations, impact on source
populations has been predicted to be lowest during
periods of population growth associated with favourable
climatic conditions (Verdon et al. 2021b). It is critical that
conservation benefits from translocating birds are not
outweighed by the negative impacts of harvesting for
translocation (Mitchell et al. 2022). ARUs may be deployed
to monitor Mallee Emu-wren occupancy at proposed
translocation source sites, providing quantitative evidence
that occupancy is increasing before any harvesting event.
For such an approach to be efficient, recogniser parameters
must prioritise precision over recall.

The acoustic recogniser presented here (https://doi.
org/10.6084/m9.figshare.16915957.v1) has potential to
be applied widely in conservation management of the
endangered Mallee Emu-wren. ARUs in tandem with
automated signal detection have surged in popularity over
the last decade (Towsey et al. 2012; Shonfield & Bayne
2017; Priyadarshani et al. 2018) and as this field develops
it is likely that cost and efficiency will further improve.
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