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Introduction

The Mallee Emu-wren Stipiturus mallee is a small, 
endangered passerine (Environment Protection and 
Biodiversity Conservation Act 1999; IUCN Red List of 
Threatened Species; Verdon et al. 2021a), specialised 
to live in habitat dominated by hummock grass Triodia 
scariosa (Brown et al. 2009; Verdon et al. 2020). Because 
Mallee Emu-wrens are shy, secretive and often occur at 
low density at the landscape scale, detection in the field 
may be challenging and is best achieved by listening 
for vocalisations (Higgins et al. 2001). Clearance of 
native vegetation, primarily in the early 20th century, has 
restricted the species to a fragmented network of large 
reserves, between 48,000 and 633,000 ha in size, located 
in the Murray Mallee region of north-western Victoria 
(Brown et al. 2009). Fire and drought are a natural part 
of the Australian landscape. However, change in land 
use since European settlement and a changing climate 
have led to longer droughts, and larger and more intense 
wildfires (Connell et al. 2017). By 2018, whole-reserve-
scale wildfires had led to the local extinction of Mallee 
Emu-wrens from six of nine reserves previously occupied 
by the species, including all South Australian populations 
(Boulton & Lau 2015). In an attempt to mitigate these 
threats, a Mallee Emu-wren translocation from Murray–
Sunset National Park, Hattah–Kulkyne National Park and 
Nowingi State Forest in Victoria to Ngarkat Conservation 
Park in South Australia was implemented in 2018 (Mitchell 
et al. 2021). This translocation provided an opportunity 
to assess autonomous acoustic recording units and 
automated acoustic detection software as a passive, long-
term monitoring tool following translocation.

To demonstrate the long-term persistence of translocated 
populations, conservation managers require a detailed 
understanding of the dynamics of those populations.  
A failure to detect individuals when they are present (i.e. a 
false negative) can lead to considerable bias in population 
estimates (Tyre et al. 2003; Buckland et al. 2012). This 

problem is exacerbated when target species are cryptic 
and occur at low densities, as might be expected for the 
Mallee Emu-wren at a release site following translocation. 
Dynamic occupancy modelling is a method to estimate 
population size that explicitly accounts for bias associated 
with false negative survey error (MacKenzie et al. 2018). 
This method allows probability of detection, probability 
of occurrence, and other vital rates to be estimated by 
recording the presence or absence of a target species 
during repeated visits to survey sites (MacKenzie et al. 
2018). Increasing the number of visits to each sampling 
site, whilst resulting in a demonstrated increase in accuracy 
of estimates of population parameters (MacKenzie et al. 
2018), increases both the time and the resources that are 
necessary to carry out such surveys, which are already 
expensive and labour-intensive. Automating aspects of the 
data-collection process may increase efficiency, without 
sacrificing precision.

One method showing promise for vocal fauna, including 
songbirds, is autonomous acoustic recording units (ARU: 
Knight et al. 2017; Shonfield & Bayne 2017). Recordings 
that either contain or do not contain vocalisations of target 
species can be used to populate dynamic occupancy 
models (Campos-Cerqueira et al. 2016; Metcalf et al. 
2019). An added advantage of this technique is that it is 
passive and minimises bias associated with observer 
avoidance or observer skill (Shonfield & Bayne 2017). 
Although initial investment in equipment may be greater 
than that of a typical observer-based survey, the cost of 
continued surveys becomes cheaper per unit effort, the 
longer that monitoring continues. Data-driven conservation 
management of threatened populations relies on 
monitoring that encompasses the natural variation that 
populations exhibit over time. However, such monitoring is 
not always implemented. A review by Taylor et al. (2017) 
concluded that translocation studies rarely incorporate 
long-term persistence into success criteria. Several 
factors have likely contributed to this trend (e.g. the cost 
of monitoring, funding cycles, periods of employment in 
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research positions, or difficulty in obtaining funding for 
monitoring in comparison with more active conservation 
initiatives). However, reducing the commitment to extended 
field times and the realisation of cost savings that can be 
achieved with automated data collection will enhance 
management capacity to maintain long-term monitoring 
post-translocation.

The use of ARUs has been demonstrated to reduce field 
labour by up to 97% (Digby et al. 2013). However, field 
recordings require a substantial investment in time for data 
processing to identify calls of targeted species (Shonfield 
& Bayne 2017). This process may be streamlined with the 
use of automated signal recognition software, hereafter 
referred to as ‘recognisers’ (e.g. de Oliveira et al. 2015; 
Katz et al. 2016; Priyadarshani et al. 2018; Marsland et 
al. 2019; Prince et al. 2019). Several methods exist but 
typically a user will ‘train’ the software to recognise the 
spectrogram signature of targeted species’ vocalisations. 
The software then analyses field recordings using a 
moving window approach and any potential matches are 
given a similarity score (for the software used in this study, 
that score will fall between 0 and 1: Knight et al. 2017). Any 
similarity score that exceeds a threshold that has already 
been determined by the user is highlighted as a detection 
by the software. A detailed summary and comprehensive 
evaluation of popular recogniser software is presented in a 
review by Knight et al. (2017).

Here we characterise three common vocalisations of 
the Mallee Emu-wren and report on development and 
performance of an automated call recogniser for the 
species using spectrogram cross correlation with the  
R package monitoR (Katz et al. 2016).

Study area and method

Recogniser development

Mallee Emu-wren vocalisations are poorly described, 
though are generally considered to include three primary 
vocalisations: a short buzzing alarm call, a contact call 
comprising one to three high-pitched staccato notes, 
and a complex song (Higgins et al. 2001; Menkhorst et 
al. 2017). The first step in developing a Mallee Emu-
wren call recogniser was to clearly define each of these 
vocalisations and assess their suitability as templates 
for a recogniser (Table 1). We produced spectrograms 
of each call using the R package seewave (Sueur et al. 

2008) and visually assessed calls for two characteristics—
intra-species consistency and inter-species uniqueness 
(Figures 1–2)—that would be favourable in automated 
call recognition. Of the three common vocalisations, we 
then identified the contact call as the best candidate for 
automated recognition. We chose 14 individual Mallee 
Emu-wren contact calls, each comprising two or three 
syllables as the basis for our recogniser (Table 1). We 
began with six three-syllable contact calls and then 
added an additional three two-syllable contact calls. We 
conducted unstructured tests of this preliminary recogniser 
and ultimately added an additional five vocalisations that 
the preliminary recogniser failed to detect. These calls 
were representative of the subtle variation that is typically 
found in Mallee Emu-wren calls, including intensity, pitch, 
ambient noise and recording quality.

To develop a recogniser for detection of Mallee Emu-
wren calls in field recordings we used the package monitoR 
in the statistical environment R (Hafner & Katz 2018;  
R Core Team 2020). MonitoR includes two methods for 
signal detection: spectrogram cross-correlation and binary 
point matching (Katz et al. 2016). We used spectrogram 
cross-correlation using automatic point selection following 
Katz et al. (2016). We provide the resultant recogniser and 
additional code allowing batch-processing of field survey 
files as an annotated R script with associated .wav files as 
supplementary material (10.6084/m9.figshare.16915957). 
Our recogniser comprises 14 individual call templates, 
each consisting of a complete, two- or three-syllable 
Mallee Emu-wren contact call. MonitoR searches field 
recordings for matches with each call template individually 
and then provides a list of every detection associated with 
each template. We used a sample rate of 44,100 Hz as 
more than half of the files used to create this recogniser 
were provided at this frequency. Those recorded at 
different (higher) frequencies were resampled to 44,100 
Hz using the function ‘changeSampRate’ in the monitoR 
package. To ensure that audio information is not lost, it is 
recommended that recording frequency be set to twice the 
maximum frequency of the targeted signal (i.e. the Nyquist 
frequency: Knight et al. 2017). Mallee Emu-wren calls 
typically fall in the range between 5000 and 12,000 Hz. 
To maximise recording time of ARUs per unit of memory 
without sacrificing quality, a sample rate of ~24,000 Hz 
may be used for future field recordings of Mallee Emu-
wren calls.

Contact call templates Location Date Author Notes

1–7 *Ngarkat CP 03/05/2018 William Mitchell Free-roaming translocated Mallee Emu-
wrens in Ngarkat CP

8–11, 13, 14 *Ngarkat CP 20/04/2018 Luke Ireland Mallee Emu-wrens calling from within 
transport boxes before release

12 Hattah–Kulkyne NP 17/01/2016 Andrew Spencer Call sourced from Xeno-Canto (2020) 
https://www.xeno-canto.org/312210 

(accessed 1 October 2020)

Table 1. Recordings used as templates for the development of a Mallee Emu-wren call recogniser. *Translocated birds were 
originally sourced from Hattah–Kulkyne and Murray–Sunset National Parks. CP = Conservation Park, NP = National Park.
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Figure 1. Primary vocalisations of the Mallee Emu-wren: (a) typical contact call, (b) alarm call and (c) song incorporating 
the typical contact call. All vocalisations were recorded by WFM in Nowingi State Forest, Victoria, in November 2020, using 
an AudioMoth autonomous acoustic recorder (Hill et al. 2019).
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Figure 2. A series of spectrogram images displaying the alarm calls of the Mallee Emu-wren Stipiturus mallee, Splendid 
Fairy-wren Malurus splendens, Superb Fairy-wren M. cyaneus and Purple-backed Fairy-wren M. assimils. Mallee Emu-wren 
calls were recorded by WFM in Nowingi State Forest, Victoria, in November 2020. All fairy-wren calls were obtained from 
Xeno-Canto (2020) (accessed 17 August 2021)—Splendid Fairy-wren: https://www.xeno-canto.org/372259, Superb Fairy-
wren: https://www.xeno-canto.org/370623 and Purple-backed Fairy-wren: https://www.xeno-canto.org/165132.
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Recogniser performance

The effectiveness of acoustic recognisers must be manually 
evaluated against a test dataset that is independent of any 
recordings used to build the recogniser (Knight et al. 2017). 
As a performance benchmark, we used 25 15-second 
audio recordings, each including 1–13 (mean = 6.7) 
known Mallee Emu-wren vocalisations. This test dataset 
contained 169 individual Mallee Emu-wren vocalisations 
that ranged in intensity from soft to loud. Vocalisations were 
manually verified by visual inspection of spectrograms and 
human listening. Recordings also included environmental 
noise and the calls of non-target species. Test audio was 
recorded in Nowingi State Forest, and Hattah–Kulkyne 
and Murray–Sunset National Parks in 2020 and 2021 by 
WFM. Mallee Emu-wren recordings were verified by direct 
observation of the calling bird at the time of recording.

We used the recogniser described above to search for 
Mallee Emu-wren recordings within the test audio files. To 
investigate the effect of similarity threshold on recogniser 
performance we repeated this process with threshold 
values of 0.15, 0.20, 0.25 and 0.30. Similarity threshold is 
a user-determined value that controls the sensitivity of the 
recogniser (Knight et al. 2017). Potential signal matches 
within an audio spectrogram are given a similarity score 
between 0 and 1. Any scores below the threshold value 
are dismissed, but signals with a similarity score above 
the threshold are retained as detections. For each test 
file at each threshold, we calculated three performance 
metrics advocated by Knight et al. (2017): (1) recall, the 
proportion of existing Mallee Emu-wren vocalisations in 
each field recording of the test dataset (verified manually) 
that were detected by the recogniser; (2) precision, the 
proportion of all detections that were true positives; and 
(3) F-score, a metric that combines precision and recall to 
aid users in identifying optimum threshold values based 
on the user’s priorities (Knight et al. 2017). We calculated 
mean precision and mean recall across all field recordings 
in the test dataset at each threshold value and present the 
results as a box-and-whisker plot (Figure 3).

Recall is calculated as                true positives 
                                         true positives + false negatives

precision as                                true positives  
                                            true positives + false positives

and F-score as                    (β2 + 1) * precision * recall 
                                                  β2 * precision + recall

where β is a metric, defined by the user, that allows 
prioritisation of either precision or recall (Knight et al. 2017). 
Values of β>1 prioritise recall, <1 prioritise precision and 
when β=1 neither precision nor recall is favoured (Knight 
et al. 2017). We calculated F-scores with β set to 0.5 
(precision twice as important as recall), 1 (precision and 
recall equally important) and 2 (precision half as important 
as recall) to compare optimum threshold choice under a 
range of priorities.

Results

The Mallee Emu-wren contact call is a good candidate for 
automated signal recognition for several reasons: few other 
species that share the same habitat have calls that overlap 

in frequency because of its high pitch (~6.5–7.5 KHz); it 
is simple and consistent; and because it is frequently 
incorporated into Mallee Emu-wren song, it makes up a high 
proportion of all Mallee Emu-wren vocalisations (Figure 1). 
Despite this call being described as thin, high-pitched and 
insect-like (Higgins et al. 2001), its spectrogram structure 
is distinct from that of insects (longer pulses and distinct 
frequency, Montealegre-Z & Mason 2005). By contrast, the 
alarm call is a poor candidate for recogniser development 
as it has many similarities with the alarm calls of other 
Maluridae species that overlap in range and habitat use 
with that of the Mallee Emu-wren (in particular Splendid 
Fairy-wren Malurus splendens and Striated Grasswren 
Amytornis striatus; fairy-wren and emu-wren calls are 
presented in Figures 1–2). Such similarities would increase 
the likelihood of false positive detections.

The recogniser that we developed successfully identified 
Mallee Emu-wren vocalisations in the test dataset of 
field recordings (Table 2, Figure 3). Similarity threshold 
influenced both precision and recall performance, with 
lower threshold values associated with higher recall and 
lower precision, whereas higher threshold values led to 
lower recall and higher precision (Figure 3). When recall 
was prioritised, the optimum recogniser similarity threshold 
was 0.15; when precision was prioritised, it was 0.3; and 
when recall and precision were considered of equal priority, 
it was 0.25 (Table 2).

Discussion

We characterised the three common call types of the 
Mallee Emu-wren and successfully developed an acoustic 
recogniser utilising the contact call of the species. Our 
recogniser performed well on the test dataset in terms of 
both precision (0.55–0.97) and recall (0.70–0.95), indicating 
that passive acoustic recording represents a feasible 
monitoring tool for this species. Acoustic monitoring has 
the potential to reduce expense in any future translocation 
of this species by considerably reducing field labour 
requirements, and it may facilitate long-term passive 
monitoring of key populations within the current distribution 
(Mitchell et al. 2021).

Context is important when evaluating recogniser 
performance (Knight et al. 2017; Leseberg et al. 2020). 
Performance metrics should be considered reliable only 
under the environmental conditions in which they were 

Threshold F-score,  
β = 0.5

F-score,  
β = 1

F-score,  
β = 2

0.15 0.601 0.696 0.829
0.2 0.756 0.790 0.827
0.25 0.876 0.831 0.790
0.3 0.897 0.811 0.739

Table 2. F-scores for different threshold values and β 
values. F-score is a performance metric for automated 
signal detection that allows the user to prioritise precision 
and/or recall. β is a metric, defined by the user, that allows 
prioritisation of either precision or recall. Values of β >1 
prioritise recall, β <1 prioritise precision, and when β = 1 
neither precision nor recall is favoured (Knight et al. 2017).
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tested (Knight et al. 2017). Many bird species may exhibit 
regional variation in vocalisations (e.g. Valderrama et al. 
2013; Goretskaia et al. 2018), potentially leading to reduced 
performance. Similarly, the potential for false positive 
detections may vary as a response to the soundscape 
in which ARUs are deployed (Knight et al. 2017). The 
contextual information associated with field recordings 
may also provide an opportunity for improved performance. 
A recent study by Leseberg et al. (2020) could increase 
recogniser precision and recall by modelling the influence 
of contextual and intrinsic variables on the likelihood that 
each detection was either a true or false positive. Although 
performance metrics described in the present study are 
informative, potential users should consider them as 
a guide only and make context-specific evaluations of 
recogniser performance in line with their research goals.

Research goals must be carefully considered when 
choosing recogniser parameters (Shonfield & Bayne 2017). 
A high call similarity threshold will lead to high precision and 
low recall, whereas a low threshold will have the opposite 
effect. Precision is paramount when there is limited time 
available for manual verification of detections (Knight et al. 
2017). False negatives as a result of emphasis on precision 
may be accounted for using statistical approaches such 
as dynamic occupancy modelling (Metcalf et al. 2019). 
When trying to detect sparsely distributed species of 
conservation concern, where a single detection has high 
value, low threshold values should be considered.

Many of the locations highlighted as potential release 
sites for future Mallee Emu-wren translocations have 
environmental characteristics that favour passive acoustic 
monitoring. Mallee Emu-wrens have a strong association 
with hummock grass (Verdon et al. 2020). Most extant 
Mallee Emu-wren populations in north-western Victoria 
inhabit ‘Triodia mallee’ vegetation characterised by 

relatively large areas of mallee eucalypt trees with partial 
ground-cover of hummock grass. Home range size in 
this vegetation type has been estimated at ~5 ha (Brown 
2011). To adequately cover such an area, multiple ARUs 
would be required. By comparison, potential translocation 
release sites, including parts of Ngarkat Conservation 
Park in South Australia, are composed of ‘mallee heath’ 
vegetation: mostly treeless shrubland with dense pockets 
of hummock grass forming at drainage points, such as 
at the base of dunes (Mitchell et al. 2021). Mallee Emu-
wrens move throughout this matrix of vegetation, but home 
ranges are typically anchored to those pockets of dense 
hummock grass. In this system, ARUs would have the 
greatest likelihood of capturing vocalisations of this species 
if placed within these pockets of hummock grass. For this 
reason, a single ARU may effectively cover a single home 
range. With this ARU placement, researchers may expect 
a territorial group of Mallee Emu-wrens to spend a high 
proportion of time in the audible vicinity of an ARU. Thus, 
recogniser parameters that prioritise precision over recall 
would allow efficient monitoring of changing occupancy at 
release sites following translocation.

Autonomous acoustic recorders provide a low-cost and 
efficient tool for the long-term monitoring of any translocated 
Mallee Emu-wren population. Acoustic monitoring may also 
be applied to conservation management of translocation 
source populations. The 2018 translocation program 
was not successful in establishing a viable population 
in Ngarkat Conservation Park (see Mitchell et al. 2021). 
Nevertheless, this program framed primarily around 
trialling and optimising translocation methods generated 
considerable new knowledge that will inform a future larger-
scale translocation (Hunt et al. 2019; Mitchell et al. 2021). 
Mallee Emu-wren populations experience fluctuations in 
size in response to prevailing climatic conditions (Connell 
2019). In the context of harvesting of Mallee Emu-wrens 

Figure 3. Performance metrics for an automated Mallee Emu-wren call recogniser, which was tested against a dataset 
of 25 independent 15-second field recordings containing vocalisations of Mallee Emu-wrens. Each detection made by 
the recogniser was manually verified to assess whether it was a true or false positive detection. Precision refers to the 
proportion of detections that were true positives. Recall refers to the proportion of vocalisations present in the recording 
(verified manually from spectrogram images) that were detected by the recogniser.
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for the purpose of future translocations, impact on source 
populations has been predicted to be lowest during 
periods of population growth associated with favourable 
climatic conditions (Verdon et al. 2021b). It is critical that 
conservation benefits from translocating birds are not 
outweighed by the negative impacts of harvesting for 
translocation (Mitchell et al. 2022). ARUs may be deployed 
to monitor Mallee Emu-wren occupancy at proposed 
translocation source sites, providing quantitative evidence 
that occupancy is increasing before any harvesting event. 
For such an approach to be efficient, recogniser parameters 
must prioritise precision over recall.

The acoustic recogniser presented here (https://doi.
org/10.6084/m9.figshare.16915957.v1) has potential to 
be applied widely in conservation management of the 
endangered Mallee Emu-wren. ARUs in tandem with 
automated signal detection have surged in popularity over 
the last decade (Towsey et al. 2012; Shonfield & Bayne 
2017; Priyadarshani et al. 2018) and as this field develops 
it is likely that cost and efficiency will further improve.
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